当前位置:酷唯二>百科问答>拉格朗日中值定理

拉格朗日中值定理

2024-10-30 20:02:03 编辑:zane 浏览量:572

拉格朗日中值定理

的有关信息介绍如下:

拉格朗日中值定理

拉格朗日中值定理,又称拉氏定理、有限增量定理,是微分学中的基本定理之一,反映了可导函数在闭区间上整体的平均变化率与区间内某点的局部变化率的关系。

定理的现代形式如下:如果函数f(x)在闭区间上[a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)。

1797年,拉格朗日中值定理由法国数学家约瑟夫·拉格朗日在《解析函数论》中首先提出,并提供了最初的证明。现代形式的拉格朗日中值定理由法国数学家O.博内提出。

拉格朗日中值定理沟通了函数与其导数的联系。在研究函数的单调性、凹凸性以及不等式的证明等方面,都可能用到拉格朗日中值定理。

想要了解更多“拉格朗日中值定理”的信息,请点击:拉格朗日中值定理百科

版权声明:文章由 酷唯二 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.kuwei2.com/answer/107558.html
热门文章